PromoCell – PromoCell is a premier manufacturer of cell culture products

Using 3D Skin Models to Test Cosmetics

Skin is the primary focus of cosmetic research. Since the European Union banned animal testing of cosmetics completely in 2013, three-dimensional skin models have been used to evaluate epidermal and dermal responses to cosmetic formulations. Such models provide a reliable tool to assess the functionality and safety of new cosmetic products.

The prologue for the development of sophisticated 3D skin models that are used by cosmetic researchers worldwide started more than 80 years ago. In 1933, a “new and improved eyebrow and lash dye” named Lash Lure was introduced to the market in the United States, perfectly reflecting the new trend in the American society of wearing more visible makeup. At that time, nobody thought that an apparently harmless cosmetic product could have severe and even deadly consequences. Yet, Lash Lure contained paraphenylenediamine, an untested chemical compound that can cause severe reactions on the face, eyelids, and eyes (McCalley AW et al., 1933). More than a dozen women were blinded, and one woman developed a deadly bacterial infection after applying the dye. The public outcry led the Roosevelt administration to give the U. S. Food and Drug Administration (FDA) authority over cosmetics. In 1938, the U. S. Congress passed the Federal Food, Drug, and Cosmetic Act , which requires stricter regulations for cosmetic products. Since then, cosmetic testing has become an integral part of product development in the cosmetic industry.

Safer products without animal testing

Infographic European Union
EU Commission Rabbit
In the 1990s, the EU introduced the first regulations to limit the use of animals in the cosmetic industry. Twenty years later, in 2013, the final ban was passed.
© European Commission

The use of animal models for testing purposes was common throughout the 20th century. However, growing public concern about the fate of laboratory animals, as well as ethical and scientific considerations (Ferdowsian HR et al., 2015) prompted lawmakers in Europe to strictly regulate and eventually ban the use of animals for testing cosmetics. Since the 1990s, restrictions on animal testing have become more stringent. In 2013, the European Union’s full ban on animal testing of finished cosmetics and their ingredients, and the sale of such products, came into force. Bans have also been enacted in dozens of other countries. In markets that still allow animal testing of cosmetics, such as the U.S., its use is declining as consumers are becoming increasingly critical.

Faced with such concerns, the cosmetic industry is developing new testing methods. “We need alternatives to animal models,” explains Dr. Anja Krattenmacher, a postdoctoral scientist in the sector for performance materials at Merck, which specializes in healthcare, life sciences and performance materials. “Besides ethical considerations, it is also important to highlight that animal skin differs from human skin and these anatomical differences might influence product absorption and penetration.” Krattenmacher and her team are using 3D skin models to test anti-aging and anti-inflammatory properties of cosmetics.

3D skin models: a valuable alternative to animal tests

Using primary cells to develop skin constructs:
Fibroblasts and keratinocytes are cultivated and differentiated together to build dermal tissues. Cosmetic products are then added, and readout tests are performed. Pictures kindly provided by Dr. Anja Krattenmacher

Human skin equivalents have been successfully generated in vitro in the last two decades, mainly by using keratinocytes cultured on a dermal substitute. “Our 3D skin models are built with fibroblasts and keratinocytes. Fibroblasts are embedded in an extracellular matrix and mirror the dermis. Keratinocytes then build the epidermis. These models are exposed to the air to induce cell differentiation,” explains Krattenmacher. “The process takes 10 to 14 days. After cell differentiation, we can keep the constructs in culture for one to two weeks while performing our tests.” Krattenmacher uses primary cells from PromoCell. “We need fresh donor cells. We cannot use cell lines that have been kept in culture for extended periods, as the cells are not pristine and not suitable for our model.”

Three-dimensional skin equivalents resemble the architecture of the human skin tissue, and they offer a much better testing platform than two-dimensional cell culture (Read our blog post on another application of 3D skin models). When testing of the cells’ reactions to chemical compounds, every cell in a monolayer comes in direct contact with substances. As a result, the concentrations that induce irritations in monolayer cell tests might substantially differ from the in vivo situations (Brohem CA et al., 2011). Moreover, many studies have compared cells grown under 2D or 3D conditions. Such cells reveal significant differences in phenotype, cellular signaling, cell migration, and drug responses (Mazzoleni G et al., 2009). “In a 3D tissue-like skin model, cosmetics are not absorbed homogeneously in all areas and not every cell can interact directly with them,” explains Krattenmacher. “Cellular responses in 3D models are therefore more similar to the in vivo situation.”

Assessing anti-aging and anti-inflammatory properties of cosmetic compounds

Building three-dimensional skin models:
Dr. Anja Krattenmacher is using fibroblasts and keratinocytes to grow skin constructs for testing cosmetics at Merck healthcare, life sciences, and performance materials company. Pictures kindly provided by Dr. Anja Krattenmacher.

Skin aging is a complex biological process influenced by various intrinsic and extrinsic factors that cause changes in the skin architecture, particularly on areas exposed to the sun (Ganceviciene R et al., 2012). Reducing the visible effects of aging is one of the primary objectives of the cosmetic industry. Three structural components of the dermis – collagen, elastin, and glycosaminoglycans – have been the subjects of the majority of anti-aging research efforts (Baumann L, 2007). In particular, a reduced content of collagen weakens the bond between dermis and epidermis and contributes to the formation of wrinkles (Content-Audeonneau JL et al., 1999). “We treat the cells in the 3D model with anti-aging compounds over several days, and observe whether the fibroblasts in the extracellular matrix produce more collagen than non-treated fibroblasts. This could induce an anti-aging effect of filling up the collagen, which becomes fragile during aging processes,” remarks Krattenmacher.

Inflammatory processes can also considerably accelerate skin aging, and the development of novel compounds with anti-inflammatory properties is currently a major area of development (Fuller BB, 2015). “In order to test new compounds, an inflammation first has to be induced in the skin model using irritants,” explains Krattenmacher. “Then we apply the anti-inflammatory substance and observe whether we can see a reduction of the epidermal swelling, which is a typical sign of inflammation. Moreover, we can measure reduction of inflammatory interleukin levels with immunohistochemistry, or ELISAs. Finally, we can isolate RNA and proteins, and analyze their expression with real-time PCRs.”

Such applications show how 3D skin equivalents have become an essential tool in cosmetic research and are widely used to test efficacy and toxicity of new formulations. “Three-dimensional skin models have great potential,” concludes Krattenmacher. “Results are reproducible and can be often translated to humans, which lowers the need for animal testing of cosmetics while giving fundamental insights into cellular interactions within tissue-like structures. These models will play an important role not only for the cosmetic industry, but also in medical research.”

Cells of the human skin

The skin is made up of various cell types. In our poster, we provide an overview of our dermal cell portfolio, along with the origins of the cells in their respective physiological niches. Our products range from follicle dermal papilla cells to fibroblasts, keratinocytes, melanocytes and human white preadipocytes. Download our flyer for an overview of our PromoCell human dermal cell portfolio.

DOWNLOAD OUR FLYER NOW

Choose your Region

Please choose your region for an optimized website experience. So we can provide you with the most useful information for your country.

  1. Albania
  2. Australia
  3. Austria
  4. Bangladesh
  5. Belgium
  6. Bosnia-Herzogovina
  7. Bulgaria
  8. Canada
  9. China
  10. Croatia
  11. Czech Republic
  12. Denmark
  13. Estonia
  14. Finland
  15. France
  16. Germany
  17. Hungary
  18. India
  19. Indonesia
  20. Ireland
  21. Israel
  22. Italy
  23. Japan
  24. Latvia
  25. Liechtenstein
  26. Lithuania
  27. Luxembourg
  28. Macedonia
  29. Malaysia
  30. Monaco
  31. Nepal
  32. Netherlands
  33. New Zealand
  34. Northern Ireland
  35. Norway
  36. Poland
  37. Portugal
  38. Romania
  39. Serbia
  40. Singapore
  41. Slovakia
  42. Slovenia
  43. South Korea
  44. Spain
  45. Sri Lanka
  46. Sweden
  47. Switzerland
  48. Taiwan
  49. Thailand
  50. United Kingdom
  51. United States

KEEP ME UPDATED

Subscribe to our newsletter and stay up to date with our latest blog posts, scientific resources and product news.

x