Cardiac Myocytes

Instruction Manual

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cardiac Myocytes (HCM)</td>
<td>500,000 cryopreserved cells</td>
<td>C-12810</td>
</tr>
<tr>
<td></td>
<td>500,000 proliferating cells</td>
<td>C-12811</td>
</tr>
</tbody>
</table>

Product Description

Cardiac muscle, a unique type of striated muscle in the human heart, is composed of single Cardiac Myocytes (HCM). Because they are responsible for the myogenic contraction of the whole cardiac muscle, Cardiac Myocytes are the most physically energetic cells in the body. PromoCell Human Cardiac Myocytes are produced at PromoCell’s cell culture facility from normal human ventricle tissue of the adult heart. Unlike freshly isolated rod-shaped myocytes, PromoCell HCM are suitable for long-term experiments, as they are prepared according to a special protocol.

Shortly after isolation, all PromoCell Human Cardiac Myocytes are cryopreserved at passage 2 (P2) using PromoCell’s proprietary serum-free freezing medium, Cryo-SFM. Each cryovial contains more than 500,000 viable cells after thawing.

Proliferating cell cultures are made from cryopreserved cells that have been thawed and cultured for three days at PromoCell.

Quality Control

Rigid quality control tests are performed for each lot of PromoCell Human Cardiac Myocytes.
They are tested for cell morphology, adherence rate, and cell viability. Furthermore, flow cytometric analyses for cell-type specific markers, e.g. sarcomeric α-actinin and slow muscle myosin, are carried out for each lot (see page 5). Growth performance is tested through multiple passages up to 15 population doublings (PD) under culture conditions without antibiotics and antimycotics.

In addition, all cells have been tested for the absence of HIV-1, HIV-2, HBV, HCV, HTLV-1 and HTLV-2, the cells – like all products of human origin – should be handled as potentially infectious. No test procedure can completely guarantee the absence of infectious agents.

Follow appropriate safety precautions!

Intended Use

PromoCell Human Cardiac Myocytes are for in vitro research use only and not for diagnostic or therapeutic procedures.

Warning

Although tested negative for HIV-1, HIV-2, HBV, HCV, HTLV-1 and HTLV-2, the cells – like all products of human origin – should be handled as potentially infectious. No test procedure can completely guarantee the absence of infectious agents.

After delivery, cryopreserved cells should be stored in liquid nitrogen or seeded directly (see page 2). Proliferating cells have to be processed immediately (see page 3).
Protocol for Cryopreserved Cells

Straight after arrival, store the cryopreserved cells in liquid nitrogen or seed them immediately.

Note: Storage at -80°C is not sufficient for cell preservation and causes irreversible cell damage.

1. Prepare the medium
 Calculate the needed culture surface area according to the plating density (see page 5) and the lot-specific cell numbers stated on the certificate of analysis. Fill the appropriate volume of PromoCell Growth Medium (at least 9 ml per vial of cells) in cell culture vessels. Place the vessels in an incubator (37°C, 5% CO₂) for 30 minutes.

2. Thaw the cells
 Remove the cryovial from the liquid nitrogen container and immediately place it on dry ice – even for short transportation. Under a laminar flow bench, briefly twist the cap a quarter turn to relieve pressure, then retighten. Immerse the vial into a water bath (37°C) just up to the screw cap for 2 minutes. Ensure that no water enters the thread of the screw cap.

3. Disinfect the vial and seed the cells
 Thoroughly rinse the cryovial with 70% ethanol under a laminar flow bench. Then, aspirate the excess ethanol from the thread area of the screw cap. Open the vial and transfer the cells to a cell culture vessel containing the prewarmed medium from step 1.

4. Incubate the cells
 Place the vessel in an incubator (37°C, 5% CO₂) for cell attachment. Replace the medium after 16–24 hours and every two or three days thereafter. The cells should be subcultured according to the subcultivation protocol (see page 4) once they have reached 70–90% confluency.
Protocol for Proliferating Cells

1. Incubate the cells
Unpack the culture vessel, do not open the lid, and immediately place it in an incubator (37°C, 5% CO₂) for 3 hours to allow the cells to recover from the transportation.

2. Replace the transport medium
Carefully open the vessel, rinse the inner side of the lid with 70% ethanol, and let air dry. Aspirate the transport medium from the vessel. Add 10 ml of the appropriate PromoCell Cell Growth Medium.

3. Check and incubate the cells
Check the cell density. Open the lid half a turn and place the vessel in an incubator (37°C, 5% CO₂). Change the medium every two to three days. The cells should be subcultured according to the subcultivation protocol (see page 4) once they have reached > 70% confluency.
Use aseptic techniques and a laminar flow bench.

Subcultivation Protocol

1. Prepare the reagents and wash the cells

Place the PromoCell DetachKit at room temperature for at least 30 minutes to adjust the temperature of the reagents. Carefully aspirate the medium from the culture vessel. Add 100 µl Hepes BSS Solution per cm² of vessel surface to wash the cells and agitate the vessel carefully for 15 seconds.

2. Detach the cells

Carefully aspirate the Hepes BSS from the culture vessel. Add 100 µl Trypsin/EDTA Solution per cm² of vessel surface. Note: We recommend detaching the cells at room temperature. Close the vessel and examine the cells under a microscope. When the cells start to detach, gently tap the side of the vessel to loosen the remaining cells.

3. Neutralize the trypsin and harvest the cells

Add 100 µl Trypsin Neutralization Solution per cm² of vessel surface and gently agitate. Carefully aspirate the cell suspension and transfer it to a centrifugation tube. Spin down the cells for 3 minutes at 220 x g.

4. Incubate the cells

Discard the supernatant (step 1), add 1 ml of the appropriate PromoCell Cell Growth Medium (step 2), and resuspend the cells by carefully pipetting up and down. Plate the cells according to the recommended seeding density in new cell culture vessels containing PromoCell Cell Growth Medium pre-warmed to 37°C. Place the vessels in an incubator (37°C, 5% CO₂) and change the media every two to three days.
Specifications

<table>
<thead>
<tr>
<th>Product</th>
<th>Recommended Culture Media*</th>
<th>Plating Density</th>
<th>Passage after Thawing</th>
<th>Marker</th>
<th>Population Doublings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cardiac Myocytes (HCM)</td>
<td>C-22070</td>
<td>10,000 - 15,000 cells per cm²</td>
<td>P2</td>
<td>Sarcomeric α-Actinin⁺ Slow muscle myosin⁺</td>
<td>> 15</td>
</tr>
</tbody>
</table>

Related Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocyte Growth Medium (Ready-to-use)</td>
<td>500 ml</td>
<td>C-22070</td>
</tr>
<tr>
<td>Myocyte Growth Medium Kit</td>
<td>500 ml</td>
<td>C-22170</td>
</tr>
<tr>
<td>Myocyte Basal Medium</td>
<td>500 ml</td>
<td>C-22270</td>
</tr>
<tr>
<td>Myocyte Basal Medium, phenol red-free</td>
<td>500 ml</td>
<td>C-22275</td>
</tr>
<tr>
<td>Myocyte Growth Medium SupplementMix</td>
<td>for 500 ml</td>
<td>C-39275</td>
</tr>
<tr>
<td>Myocyte Growth Medium SupplementPack</td>
<td>for 500 ml</td>
<td>C-39270</td>
</tr>
<tr>
<td>DetachKit</td>
<td>30 ml, 125 ml, 250 ml</td>
<td>C-41200, C-41210, C-41220</td>
</tr>
<tr>
<td>Cryo-SFM</td>
<td>30 ml, 125 ml</td>
<td>C-29910, C-29912</td>
</tr>
<tr>
<td>HCM Pellet</td>
<td>1 million cells per pellet</td>
<td>C-14080</td>
</tr>
</tbody>
</table>

*The catalog numbers in this table are for media in ready-to-use packaging.